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Abstract

We introduce a sharp interface method (SIM) for the direct numerical simulation of unstable fluid–fluid interfaces. The
method is based on the level set approach and the structured adaptive mesh refinement technology, endowed with a cor-
ridor of irregular, cut-cell grids that resolve the interfacial region to third-order spatial accuracy. Key in that regard are
avoidance of numerical mixing, and a least-squares interpolation method that is supported by irregular datasets distinctly
on each side of the interface. Results on test problems show our method to be free of the spurious current problem of the
continuous surface force method and to converge, on grid refinement, at near-theoretical rates. Simulations of unstable
Rayleigh–Taylor and viscous Kelvin–Helmholtz flows are found to converge at near-theoretical rates to the exact results
over a wide range of conditions. Further, we show predictions of neutral-stability maps of the viscous Kelvin–Helmholtz
flows (Yih instability), as well as self-selection of the most unstable wave-number in multimode simulations of Rayleigh–
Taylor instability. All these results were obtained with a simple seeding of random infinitesimal disturbances of interface-
shape, as opposed to seeding by a complete eigenmode. For other than elementary flows the latter would normally not be
available, and extremely difficult to obtain if at all. Sample comparisons with our code adapted to mimic typical diffuse
interface treatments were not satisfactory for shear-dominated flows. On the other hand the sharp dynamics of our method
would appear to be compatible and possibly advantageous to any interfacial flow algorithm in which the interface is rep-
resented as a discrete Heaviside function.
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1. Introduction

Free (fluid–fluid) interfaces in the presence of body forces and/or differential velocities are subject to defor-
mation and breakup – processes that are principally responsible for flow regimes development, and thus for
the macroscopic features in all multi-fluid systems. Depending on the direction of the acceleration vector, body
forces normal to an interface can be stabilizing or destabilizing, differential velocities parallel to the interface
are always destabilizing, and for development of instability such driving forces must be sufficient to overcome
the force due to interfacial tension (always stabilizing). Under unstable conditions, early growth of an inter-
facial disturbance is exponential in time, and the theory for understanding this regime, based on the linearized
Navier–Stokes equations, rests on firm grounds. At amplitudes that are a significant fraction of the wave-
length, this theory breaks down, non-linear analysis becomes scarcely feasible, and numerical simulation is
the key to further progress. In this paper, we address ourselves to a preliminary step in this quest – that of
simulating interfacial instabilities at their inception and early growth. For this, linear regime, as noted above,
there is a rigorous methodology and a body of work that make available a solid foundation for measuring
success in a numerical endeavor that is, by its very nature, fraught with difficulty.

More specifically, we are concerned with numerical prediction of the classical Rayleigh–Taylor (R–T) and
Kelvin–Helmholtz (K–H) instabilities at clean interfaces of viscous immiscible fluids [12]. They are the two
canonical problems of the subject, as they capture the essential physics in all manifestations of interfacial
instability in nature.1 Correspondingly, we will refer to R–T and vK–H flows, thus emphasizing the fundamen-
tal significance of viscosity in the later case (arising due to viscosity discontinuity, this is known as the Yih
instability [72]), as distinct from the original K–H instability (ideal fluids) [9]. Our immediate practical interest
derives from the simultaneous action of these instabilities, at curved interfaces, along with transient mean flow
development, as found in aero-breakup (Fig. 1 and [64,65]). The experiments only hint at the rich physics yet
to be found in complex, non-linear interactions that generate, depending on fluid properties and flow condi-
tions, a multitude of breakup regimes (morphologies), and the problem could well be regarded as the next
canonical step towards understanding, a step for which direct numerical simulations can be seen to be clearly
indispensable.

A key requirement in this practical perspective is that the numerical simulation be capable of self-selecting
(for dominant growth) the naturally-preferred wavelength(s) as appropriate to any particular flow realization.
Thus, it is necessary that the numerical simulation method is capable of recovering the dispersion relationships
(growth rates as function of wave-length) found from linear stability analysis, and that this is done naturally as
a part of the solution evolving from random, infinitesimally small interface-shape perturbations, as opposed to
seeding of the complete flow field derived from eigensolutions. In the presence of viscosity, the generation of
such eigensolutions for the vK–H problem involves a significant numerical effort [66,68]. Moreover in the pres-
ence of superposition of multiple types of instabilities, perhaps even with a developing base flow (as in many
practical problems, including such as shown in Fig. 1) the eigensolutions would be extremely difficult to obtain
by any means, if at all. Meeting this practical requirement is a special, and so far unique, aim of this paper.

Our method is focused on the singular nature of real, immiscible, fluid–fluid interfaces – boundaries of dis-
continuity in material properties, velocity derivatives and normal stresses. In particular, the solution is
obtained by coupling the two flows on either side through a rigorous application of the exact boundary con-
ditions at the interface (SIM, for Sharp Interface Method). While much more elaborate (and expensive) com-
pared to the standard approach in the past 15 years, an approach that embeds the boundary in the solution of
the two bulk flows through a narrow, constant-width interfacial region of variable (transitional) properties, we
show that for shear-dominated flows the additional effort may be well deserved. On the other hand, we will
also show that the diffuse interface method (DIM) is quite adequate for problems which are not dominated
by shear, as is the case for R–T flows, and of course as in the numerous cases involving capillary-dominated
flows (bubbles, drops at mild conditions of deformation and/or splitting/coalescence) that have been well doc-
umented in the literature.
1 Not included in the above general statement are capillary instabilities and the effects of interfacial tension gradients (Marangoni
instabilities) and of shock waves (Richtmyer–Meshkov instabilities).



Fig. 1. Sequences of experimental LIF (laser-induced fluorescence) images during breakup of TBP (tributyl phosphate) drops in a high-
speed gas flow [64]. (a) M ¼ 3, We ¼ 75, Oh ¼ 0:013, R ¼ 500. (b,c) M ¼ 0:87, We ¼ 5400, Oh ¼ 0:013, R ¼ 15; 000. Images in (c) are taken
by the camera 60� oblique to the gas flow. M is the flow Mach number; We, Oh, and R are the Weber, Ohnesorge, and Reynolds numbers,
respectively. Initial drop size is 3.5 mm.
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It is noteworthy that concerns about bypassing an explicitly-sharp treatment have been raised previously
[27,39], but mildly and broadly, and they were not resolved. On the other hand, Shyy et al. [57,71], LeVeque
et al. [34,35] and Sussman et al. [63] offered sharp treatments, but without addressing the particular fluid
dynamic and interfacial instability context considered here.

The alternative noted above (based on the immersed boundary method [45,46]) is embodied in two classes of
approaches, distinguished by the manner in which the transition in properties, most notably for our present pur-
poses that of viscosity, is implemented. One, the Diffuse Interface Method (DIM), smears the discontinuity over an
interfacial region of constant-width, made up by a few numerical cells (typically 2–8, on each side), according to a
mollifying function chosen among a variety that have been used for this purpose [60,61,70]. The other, called the
Volume of Fluid method (VOF), maintains the interface kinematically sharp, but it is dynamically diffuse in that the
interfacial cell is occupied by a mixture of the two fluids, with one pressure, velocity and viscosity, the latter defined
by some prescribed interpolation scheme from the pure-fluid viscosities weighted by the volume fractions. In both
the DIM and VOF the interfacial tension is represented as a body force in the momentum equation [11,16,48,70] –
it is applied within a mollified zone (in both DIM and VOF).2 Using the VOF method, Coward et al. [13,36]
(Couette flow) and Boeck et al. [10] (free shear layer) have shown good comparisons to linear stability theory with
2 Recently there has been progress in imposing the interfacial tension sharply in level set [27,63] and VOF [16] based methods.
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eigenfunction-seeded calculations for Reynolds numbers of 800 and 8000, respectively, and they highlighted the
importance of dealing with the viscosity jump. No valid comparisons are available for the DIM [66].

In this paper, we introduce the SIM, and we present results of its implementation into our MuSiC (Multi-scale

Simulation Code) code. This is a critical step in developing the simulation capability sought for problems such as
shown in Fig. 1. Previously developed/presented key features of the code include (a) the characteristics-based
matching for consistent interfacing between fluids (or fluids/solids) of high acoustic impedance mismatch at
all flow speeds [40]; (b) an anchored, unlimited level set that provides high-fidelity performance in capturing inter-
faces [41], and (c) all of the above implemented in a structured adaptive mesh refinement (SAMR) environment
for the high-resolutions needed in interfacial breakup [42]. The SIM is implemented in a front-tracking-like man-
ner, using a band of unstructured-grid (cut-cells around the interface) incorporated into the SAMR mesh, and a
treatment of fluxes at the interface that is based on one-sided calculation of derivatives which are also matched to
satisfy the set of interface jump conditions, as appropriate for a boundary of discontinuity.3 The method is third-
order accurate both in the bulk fluids and near the interface, as appropriate for DNS of viscous flows. It will
become apparent that the sharp dynamics of our method would appear to be compatible and possibly advanta-
geous to any interfacial flow algorithm in which the interface is represented as a discrete Heaviside function.

In particular, we demonstrate second-order convergence in stresses, and thus with MuSiC–SIM we are able
to recover complete neutral-stability maps of linear stability theory for viscous shear flows, as well as growth
factors, all with the simple (primitive) seeding as discussed above.

As noted already, the evaluation basis of simulations presented here is linear stability analysis carried out with
our All-Regime Orr-Sommerfeld (AROS) code. It involves domain-decomposition and Chebyshev collocation
methods applied to the linearized Navier–Stokes equations. We use high-order Chebyshev polynomials and qua-
druple precision to permit convergent eigensystem analysis (even for large density/viscosity ratios) with the QZ
algorithm. The code has been extensively verified with problems of various types as summarized in [59,66–68].
These works also address: (a) what is the relation/distinction between true interfacial shear instabilities of immis-
cible–fluid interfaces (Yih-type), and interface-like instabilities found in physically-diffuse interfaces under cer-
tain conditions; (b) whether an immiscible–fluid behavior can be recovered in the limit of a miscible layer
thickness being let go to zero; and (c) the effect of mass diffusion (the Schmidt number) in the above questions.

A technical overview of our method in provided in Section 2. In Section 3 we provide the gridding strategy
for the adaptive, sharp treatment. Then the heart of our numerical approach (SIM), that is the calculation of
fluxes at interfacial cell edges, is given in Section 4. The performance in basic tests can be found in Section 5,
and several applications to simulation of instabilities, both in R–T and vK–H flows, are in Section 6. Here we
include comparison exercises with DIM. Conclusions are summarized in Section 7.

2. Basic considerations

As noted above, our Sharp Interface Method (SIM) is focused on satisfying the jump conditions at the inter-
face exactly (within one cell)
3 Tw
of emb
Stresses :

JC1 : ½T nn� ¼ ½P � þ rj

JC2 : ½T ng� ¼ 0

Velocitycontinuity :

JC3 : ½u� ¼ 0

JC4 : ½v� ¼ 0

Propertyjump :

JC5 : ½q� ¼ given 6¼ 0

JC6 : ½l� ¼ given 6¼ 0

ð1Þ
o-sided treatment of interface in SIM is to be contrasted to the one-velocity/pressure treatment found in interfacial Cartesian cells
edding-based approaches (DIM, VOF).
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where T nn and T ng are the normal and shear components of the viscous stress tensor, respectively;~n is the unit
normal-to-the-interface vector;~g is the unit tangential-to-the-interface vector; P is fluid pressure; u ¼ ðu; vÞ is
the velocity vector; (l; q; r) are the fluid (viscosity, density, surface tension); j is the interface curvature; and
the brackets denote the jump of the bracketed quantity across the interface, i.e. ½W� ¼ Wþ �W�.

Note in particular that because of JC2 and JC6, the tangential velocity derivatives are discontinuous at the
interface, and that because of JC1, the normal velocity derivatives on a curved interface become discontinuous
too. As one could deduce from Yih’s theory [72], the former discontinuity plays the crucial role in interfacial
instability of shear flows, and it is therefore the sine qua non in the numerical formulation addressed in this
paper. This is what sets apart this work from that by Kang et al. [27], as they assumed continuity in both these
derivatives. On the other hand, it is the treatment of this same discontinuity that sets our method apart from
the DIM, as the whole basis of it is to smooth (or mollify) the discontinuity. In Section 6, we show that this
can prove problematic to fidelity for unstable viscous Kelvin–Helmholtz flows.

Respect for the jump conditions in numerical terms requires convergence in shear stresses, which translates
to a requirement for a minimum of second-order accuracy in primitive variables – in fact, due to other poten-
tial losses we aim for third-order accuracy. The essential idea in achieving this goal is avoidance of numerical
mixing, and this in turn is obtained by a combination of the following key features of our method:

(a) A sharp, piecewise-linear definition of the interface, Section 3.
(b) A third-order-accurate mapping between cell-average and (centroid) point values of all interfacial cells,

Section 4.1.
(c) A flux treatment on the interface-defining edges of the interfacial cells that incorporates the jump con-

ditions at all interfacial vertices to the third-order accuracy, Section 4.2.
(d) A third-order accurate least-squares interpolation procedure that is based on irregular data-sets, dis-

tinctly on each side of the interface (Appendix B).

All this is implemented within the Structured Adaptive Mesh Refinement (SAMR) framework. A corridor
of irregular cut-cells (C2-grid) is imbedded on the Cartesian (C1-grid) of the finest SAMR level (Fig. 2). The
Fig. 2. Illustration of the C2-grid corridor on top of the C1-grid of the finest SAMR level.
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flow field near the interface is obtained from finite-volume updates on C2-grid, respecting interfacial jump con-
ditions enforced to the third-order spatial accuracy at interfacial vertices. Solution in bulk fluids is obtained by
a third-order-accurate conservative finite difference method on C1-grid. These two solutions are properly syn-
chronized in the frame of the third-order-accurate Runge–Kutta time updates.

This approach sets us apart from the Ghost Fluid Method whose underlying philosophy is based on extrap-
olation to populate the Ghost cells. In the original approach [15,27] this was done on a first-order basis with
attendant difficulties. More recently [17], high-order techniques were demonstrated and accurate solutions to
the Stefan problem were obtained. Further developments along these lines towards addressing the kinds of
problems considered here would appear feasible.

The notion of enforcing jump conditions at an interface has also been suggested by LeVeque et al. [34,35] –
they have developed a second-order accurate, discrete approximation of elliptic equations within a uniform
Cartesian-grid. Shyy et al. [57,71] used cut-cells to handle the interface on a Cartesian-grid and demonstrated
second-order accuracy (both locally and globally) for solving the incompressible Navier–Stokes equations.
Most recently, Sussman et al. [63] have also shown the importance of honoring jump conditions – they worked
on incompressible flow with a combination of the level set, volume tracking, and projection methods. The
present paper differs from existing approaches, including the ones cited above, not only in methodology,
but also in demonstrating the value of sharp treatment for the class of physical problems involving unstable,
sheared interfaces.

3. Adaptive, Cartesian, Cut-Cell Mesh Refinement (AC3MR)

3.1. SAMR, C1-grid

As the means to more effectively resolve the interfacial region, we employ parallel, structured AMR. Devel-
oped in late 1980s by Berger and co-authors [5–7] for gas dynamics, it has been recently combined with the
level set method [41] and characteristics-based matching (CBM) to simulate high-speed, multi-fluid flows
[40]. SAMR is a multi-level, dynamic hierarchy of nested, structured-grid patches (Fig. 3) [3]. Our SAMR-
code is implemented within the SAMRAI framework [26,51,69] and combines the following elements:
Fig. 3. Illustration of the C1 and C2-grids and the dSAMR-corridor, for a 4-level SAMR with a refinement ratio of 4 (SAMRL4-R4). SAMR
patches on different levels are shown in different color. As discussed in [40], SAMR grid Xfh0 ;h1 ;...;hkgjk¼0;...;L�1 is a nested hierarchy of L grid
levels Xh0 � Xh1 � � � � � XhL�1 , where the coarsest grid Xh0 covers the entire computational domain. Each level Xhk consists of a union of
Mk logically rectangular regions, or patches, at the same grid resolution hk and of generally different size. Note that the levels are nested,
but the patches on different levels are not, and the patches on the same level may overlap. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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(a) Algorithms to dynamically create patches of various (grid) refinements and to communicate solutions

among them. This includes specification of tagging criteria (refinement of dSAMR-corridor around the
zero-contour of level set [41]); generation/disposal of SAMR patches according to the Berger–Rigoutsos
algorithm [7] and inter-level prolongation/restriction operators needed to communicate/interpolate solu-
tions between patches (the third-order-accurate, least-squares algorithm developed for this purpose is
described in Appendix B).

(b) Patch-update solver. We use a conservative, finite difference, pseudo-compressibility method [14], based
on a third-order-accurate, piecewise-parabolic spatial dicretization [38,39].

(c) Time-integrator with dynamic time-stepping. This is for observing multiple CFL limits (level-dependent),
and for synchronizing the solutions among different patches. Details of the third-order-accurate, explicit
Runge–Kutta, hyperbolic SAMR time-integrator can be found in [40].

3.2. Cut-Cell, unstructured, C2-grid

The interface position is obtained by solving the level set (u) equation with the unsteady velocity field [41].
Hence, a new C2-grid must be regenerated at the beginning of each time step. The procedure involves the fol-
lowing steps:

(1) Creating markers defined by the intersections of the level set’s zero-contour with the gridlines, Fig. 4(a).
The piecewise-cubic positioning algorithm is given in Appendix A.

(2) Connecting these markers piecewise-linearly, to create a set of polygons that surround the interface,
Figs. 2 and 4(b). Depending on their position relative to the interface, these polygons are called positive

and negative cut-cells. Those signed-cut-cells that are sufficiently small (with areas Asmall < 0:4h2), are
joined with same-sign, immediate neighbors – the ones with the maximum cell-cell contact interface,
Fig. 4(c).

(3) Adding a buffer layer of regular cells so as to create a narrow-band of cells around the cut-cells, Figs. 2
and 4(d). The width of this band (measured normal to the interface) is selected � ð2 st hÞ, where st is the
spatial-discretization stencil used on the C1-grid. Thus, the C2-grid is generated so as to adapt to the C1-
grid smoothly while providing an effective barrier between the two bulk-fluid solutions.

The flow solution is updated on the C2-grid (Section 4), and restricted to the underlying C1-grid, using a
least-squares interpolation on an appropriate irregular dataset (Section 4.2). The level set function is then
updated to provide the new configuration of the interface at the next time level tðnþ1Þ. Before their disposal,
the data structure and solution on the CðnÞ2 -grid are used to initialize the next-time-level Cðnþ1Þ

2 -grid (Section
4.2).

From the mesh generation point of view [4,20,52], our meshing strategy can be viewed as a combination of
h- and p-refinements. Some polygons generated by the above algorithm might be skew and/or concave, but
this is mitigated to a significant degree by our least-squares interpolation algorithm. The robustness and accu-
racy of meshing could be further improved by r-refinement (e.g. using the Laplace–Beltrami Target Metric

(LBTM) adaptation method [21]), at the cost, of course, of added complication in programming as well as
expense.

4. The Sharp Interface Method (SIM)

On the C1-grid, the variables are defined at the cell centers and updated by a rather standard conservative
finite difference formulation, as used in our previous work [38,39].

On the C2-grid, the finite-volume update of the mth cut-cell is obtained by time integration of cell-averaged,
conservative variables, UðmÞ, using
o

ot

Z
XðmÞðtÞ

Umðx; tÞdXðmÞ þ
Z

CðmÞðtÞ
FdCðmÞ ¼

Z
XðmÞðtÞ

SdXðmÞ ð2Þ



Fig. 4. Illustration of the C2-grid generation procedure.
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where XðmÞ and CðmÞ are the volume and surface area, respectively, of the mth irregular, C2-cell. The vector of
cell-average, conservative variables is
UðmÞ ¼
�q

qu

qv

264
375
ðmÞ

¼ 1

XðmÞ

Z
XðmÞ

Umðx; tÞdX ð3Þ
The vectors of point values, UðmÞ, are defined at cell’s centroids; and the in-cell polynomials, Umðx; tÞ, repre-
sent third-order-accurate distributions. These distributions are constructed by least-squares interpolation (Sec-
tion 4.1 and Appendix B), from point values and flow variables at interfacial vertices. The latter variables are
double-valued, U

þ=�
ðiÞ (see Fig. 5), and computed with the sharp reconstruction algorithm described in Section

4.2. The vertices of cut-cells are either internal or interfacial. The latter ones are defined as those at the two
ends of each interfacial edge (Fig. 5).



Fig. 5. The terminology and nomenclature employed in SIM. Explanations are given in the text.
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Fluxes at each edge of C2-cells are defined as
F ¼
qun

quun þ ðP � sxxÞnx � sxyny

qvun � sxynx þ ðP � syyÞny

264
375� _x � n

q

qu

qv

264
375 ð4Þ
where P and s are the fluid pressure and viscous stress tensor, respectively; n ¼ ðnx; nyÞ is the outwards-point-
ing normal-to-the-edge unit vector; and _x is the cell-edge velocity (non-zero only for interfacial edges). The last
term on the right-hand-side of Eq. (4) represents the dynamic flux treatment of interfacial cells [19,25]. Body
forces are accounted for by the following source term
S ¼
0

qgx

qgy

264
375 ð5Þ
The semi-discrete representation of Eq. (2) is
o

ot
UðmÞðtÞ þ

1

XðmÞ

XNE

e¼1

CeFe ¼ SðmÞ ð6Þ
where N E is the number of edges for the mth irregular cell, and Ce is the area of the eth-edge. Computation of
numerical fluxes Fe requires in-cell polynomials, constructed from variable values at cell centroids and inter-
facial vertices. The former ones are recovered from cell averages by introducing a third-order correction as
follows:
UðmÞ ¼ UðmÞ � dð3ÞUðmÞ þ Oðh4Þ

dð3ÞUðmÞ ¼
1

XðmÞ

CðmÞxx

2
@xxUðmÞ þ CðmÞxy @xyUðmÞ þ

CðmÞyy

2
@yyUðmÞ

 !
ð7Þ
where the moments of inertia
CðmÞxx ¼
Z

XðmÞ

x2dX; CðmÞxy ¼
Z

XðmÞ

xy dX; and CðmÞyy ¼
Z

XðmÞ

y2dX
are computed numerically for each irregular cell.
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Mapping by Eq. (7) is used to (a) populate the C2ðtðnÞÞ-grid upon its creation, on the basis of point values
from regular C1-grid and previous C2ðtðn�1ÞÞ-grid, Fig. 6, and (b) map new updates for cell-average variables to
point values, as needed in the evaluation of fluxes. This is done at the end of each Runge–Kutta stage.

The evaluation of fluxes at the cell-edges adjacent to cells of same fluid, referred to as the interior cell-edges,
is described in Section 4.1. The fluxes at the interface-defining edges require special treatment by incorporating
the jump conditions. This, the essence of our method, is detailed in Section 4.2.

The overall time discretization is carried out with a three-stage Runge–Kutta TVD scheme [56], with an
appropriate synchronization between C2-grid solution and multi-level C1-grid solution within the SAMR
framework. After completing each time step ½tðnÞ; tðnþ1Þ� on the finest SAMR level, the material velocity
becomes available for moving the Level Set function and constructing the new C2-grid, Fig. 6. Thus, the cycle
repeats itself and the flow evolves accordingly.

4.1. Flux calculation on the interior cell-edges

Fluxes Fe at the edges between cells (m) and (k) are computed using the Local-Lax-Friedrichs (LLF) flux

splitting algorithm
Fig. 6.
shown
and flu
Fe ¼
1

2
F UðmÞe

� �
þ F UðkÞe

� �
þ bkeS UðmÞe �UðkÞe

� �h i
ð8Þ
where the sign S ¼ �1 depends on the convention used for the unit normal at the cell-edges. As demonstrated
in [39], the slope for information flow in this upwinding scheme can be set to
bke ¼ aMAX ks UðmÞe

� ��� ��; ks UðkÞe

� ��� ��� �
s¼1;...;3

ð9Þ
Outline of the C1–C2-grid synchronization algorithm. The main steps involved in the generation/update/disposal of the C2-grid are
on the left (in yellow), while the main steps for time update of the C1-grid are shown on the right (in blue). Interpolation, remapping
x synchronization are steps 2, 6 and 9.
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where ks is the sth-component of the eigenvalue vector of the convective flux, ½uþ c; c; u� c�T, and c is the
numerical sound speed chosen to maintain numerical Mach number below 10�3. Nominally, for compressible
flow a is set to be O(1). In the nearly-incompressible regime, the value a ¼ 0:05 is sufficient to avoid central-
differencing for pressure gradient operator and the associated decoupling on odd and even grid points, while
providing a low level of numerical diffusion. More about pseudocompressible methods for incompressible
flows and comparison with projection and LBE methods can be found in [14,37–39].

Edge values UðmÞe and UðkÞe for the above flux integration are provided by the third-order-accurate Least-
Squares interpolation (described in Appendix B and denoted hereafter as LSq3), using support datasets sam-
pled in the following manner4:

(a) First, we take data from the centroids of the nearest irregular C2 cells, and centers of regular C1 cells, all
belonging to the same fluid as the treated cell.

(b) Second, we check the vertices of the neighbor cut-cells. If any of these vertices are interfacial, then same-
fluid values are taken into the interpolation dataset.

With this sampling we avoid numerical mixing across the interface.
It is important to emphasize that the numerical fluxes must be synchronized at the boundary between reg-

ular (C1) and irregular (C2)-grids (Fig. 6), to ensure conservation. This is implemented in a manner similar to
that employed by Berger and Collela [5] for SAMR-synchronization of fluxes between cells with different grid
resolutions. More specifically, at the edges interfacing C1 and C2 cells, we use the single numerical flux taken
from the flux calculation on unstructured C2-grid, thus preventing mass and momentum losses at the C1–C2-
grid boundary.

4.2. Flux calculation on the interface-defining cell-edges

The treatment of numerical fluxes on interfacial edges is non-conservative, as necessary for multimaterial
interfaces [1,2,15,40]. Using the notation of Fig. 5, these fluxes are Fþðm;jÞ ¼ FðUðmÞe Þ and F�ðk;jÞ ¼ FðUðkÞe Þ, where
the edge values UðmÞe and UðkÞe are provided by the LSq3 using support datasets sampled as described in the end
of Section 4.1. Thus, the principal task is to obtain a sharp reconstruction at the interfacial vertices – this is
done by incorporating the jump conditions at the interface through a third-order-accurate, sided,4 least-squares

interpolation, carried out as follows.
Flow fields for primitive variables around each interfacial vertex are approximated with the following

sided5 multi-dimensional Taylor expansions
4 As
compu

5 We
~Wþðx; yÞ ¼
uI þ ð@þx uÞxþ ð@þy uÞy þ aþ1 x2 þ aþ2 xy þ aþ3 y2 þOðh3Þ
vI þ ð@þx vÞxþ ð@þy vÞy þ bþ1 x2 þ bþ2 xy þ bþ3 y2 þOðh3Þ
PþI þ ð@

þ
x PÞxþ ð@þy P Þy þOðh2Þ

2664
3775 ð10Þ
and
~W�ðx; yÞ ¼
uI þ ð@�x uÞxþ ð@�y uÞy þ a�1 x2 þ a�2 xy þ a�3 y2 þOðh3Þ
vI þ ð@�x vÞxþ ð@�y vÞy þ b�1 x2 þ b�2 xy þ b�3 y2 þOðh3Þ
P�I þ ð@

�
x PÞxþ ð@�y P Þy þOðh2Þ

2664
3775 ð11Þ
Note that velocity continuity is already accounted for. Similar to the LSq3 interpolation discussed in Appen-
dix B, we solve for the following vector of unknowns:
X ¼ ðuI; vI; PþI ; P
�

I; @
þ
x u; @þx v; @þx P ; @�x u; @�x v; @�x P ; @þy u; @þy v; . . . etc . . . ÞT ð12Þ
described in Appendix B, the LSq3 provides also second-order-accurate approximations of spatial derivatives, which are used for
tation of viscous stresses.
use sided instead of one-sided to avoid potential confusion by the presence of two sides on which this process is implemented.
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corresponding to 28 variables in total per interfacial vertex. Truncating expansions Eqs. (10) and (11) to the
second-order, the number of unknowns can be reduced to 16. Hereafter, the third-order and second-order
sided interpolations are denoted as SIM3 and SIM2, respectively.

To close the problem, we (a) use the two stress jump conditions, Eq. (1) and (b) require the polynomials of
Eqs. (10) and (11) to pass through the gravity centers of the nearest irregular cells (as close as possible, in the
Least-Squares sense). The various pieces of information developed for these purposes may be listed as follows:

(a) Normal and shear components of the viscous stress tensor are expressed by:
T nn ¼
2

3
lðe1@xuþ e2@xvþ e3@yuþ e4@yvþ e5uþ e6vÞ ð13Þ
and
T ng ¼ lðf1@xuþ f2@xvþ f3@yuþ f4@yvþ f5uþ f6vÞ ð14Þ

where the coefficients of transformation to the normal-to-interface coordinate system are computed as:
e1 ¼ 2xnnx � xggx e2 ¼ 2xnny � xggy

e3 ¼ 2ynnx � yggx e4 ¼ 2ynny � yggy

e5 ¼ 2ðxn@xnx þ yn@ynxÞ � xg@xgx � yg@ygx

e6 ¼ 2ðxn@xny þ yn@ynyÞ � xg@xgy � yg@ygy �
1
y

ð15Þ
and
f1 ¼ xngx þ xgnx f 2 ¼ xngy þ xgny

f3 ¼ yngx þ ygnx f 4 ¼ yngy þ ygny

f5 ¼ xn@xgx þ xg@xnx þ yn@ygx þ yg@ynx

f6 ¼ xn@xgy þ xg@xny þ yn@ygy þ yg@yny

ð16Þ
(b) The interfacial geometry is expressed by:
Unit normal : n ¼ ru
jruj ¼ ð@xu; @yuÞ ¼ ðnx; nyÞ

Unit tangential : t ¼ ðgx; gyÞ ¼ ðny ;�nxÞ

Curvature : j ¼ r � ru
jruj

� �
¼ @xnx þ @yny þ 1

ny

y

ð17Þ
where 1 ¼ 0 and 1 for Cartesian and cylindrical coordinate systems, respectively.

(c) The normal and tangential components of the velocity vector are obtained from
V n

V g

� �
¼ J

u

v

� �
ð18Þ
where the Jacobian matrix for coordinate transformation and its inverse are defined as
J ¼
nx ny

gx gy

" #
; J�1 ¼

xn xg

yn yg

" #
¼

nx ny

ny �nx

� �
ð19Þ
Importantly, the Level Set-based computation of viscous stresses allows to account for interfacial curvature
(with e5;6 and f5;6).

(d) Derivatives involved in Eqs. (15)–(17) are evaluated in the following way:
� First, we compute regular-grid point values of the Level Set derivatives, ð@xu; @yuÞ ¼ ðnx; nyÞ, using the

fourth-order central differencing.
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� Second, using the above-computed regular-grid values of nx; ny , their spatial derivatives are calculated
at the regular-grid, again with the fourth-order central differencing.
� Finally, for each interfacial vertex, we reconstruct normals, tangentials and their spatial derivatives

using the fourth-order cubic interpolation along the corresponding gridline.
(e) Now, the stress jump conditions (JC1 and JC2 in Eq. (1)) are written as:
6 In
minim
carefu
of the
lþ

l�
f1o

þ
x uþ f2o

þ
x vþ f3o

þ
y uþ f4o

þ
y vþ f5uI þ f6vI

	 

¼ f1o

�
x uþ f2o

�
x vþ f3o

�
y uþ f4o

�
y vþ f5uI þ f6vI ð20Þ
and
2lþ

3
e1o

þ
x uþ e2o

þ
x vþ e3o

þ
y uþ e4o

þ
y vþ e5uI þ e6vI

	 

� PþI

¼ 2l�

3
e1o

�
x uþ e2o

�
x vþ e3o

�
y uþ e4o

�
y vþ e5uI þ e6vI

	 

� P�I þ rj ð21Þ
which provide two of the equations needed for closure of the SIM interpolation. The rest 26 (SIM3), or 14
(SIM2) closing equations are derived from the following minimization problem. For example in SIM3 this
amounts to
MIN

E juj 	
PNþ
i¼1

xþi u
LSqþ

3ð Þ
i � ui

� �2

þ v
LSqþ

3ð Þ
i � vi

� �2
" #

þ
PN�
i¼1

x�i u
LSq�3ð Þ

i � ui

� �2

þ v
LSq�3ð Þ

i � vi

� �2
" #

EP 	
PNþ
i¼1

xþi P
LSqþ

3ð Þ
i � P i

� �2

þ
PN�
i¼1

x�i P
LSq�3ð Þ

i � P i

� �2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð22Þ
where ~Wi ¼ ðui; vi; P iÞ is the known solution at the ith datapoint with coordinate xi and ~W
LSq�3ð Þ

i is the corre-
sponding LSq3 interpolation by Eqs. (10) and (11). This results in6 26 algebraic equations
oE juj

o @þx u
� � ¼ oE juj

o @þy u
	 
 ¼ oE juj

o @�x u
� � ¼ oE juj

o @�y u
	 
 ¼ oE juj

o @þx v
� � ¼ oE juj

o @þy v
	 
 ¼ oE juj

o @�x v
� � ¼ oE juj

o @�y v
	 
 ¼ oE juj

o @þxxu
� �

¼ oE juj

o @þxyu
	 
 ¼ oE juj

o @þyyu
	 
 ¼ oE juj

o @�xxu
� � ¼ oE juj

o @�xyu
	 
 ¼ oE juj

o @�yyu
	 
 ¼ oE juj

o @þxxv
� � ¼ oE juj

o @þxyv
	 
 ¼ oE juj

o @þyyv
	 


¼ oE juj

o @�xxv
� � ¼ oE juj

o @�xyv
	 
 ¼ oE juj

o @�yyv
	 
 ¼ oEP

oPþI
¼ oEP

oP�I
¼ oEP

o @þx P
� � ¼ oEP

o @þy P
	 
 ¼ oEP

o @�x P
� � ¼ oEP

o @�y P
	 


¼ 0 ð23Þ
(f) The rest of the SIM reconstruction is similar to the LSq3 interpolation described in Appendix B – i.e.
(Eqs. (20),(21),(23)) are converted into the linear algebra
ASIMX ¼ BSIM ð24Þ

For x�i and xþi , the weights in Eq. (B.7) are utilized. The support for SIM interpolation is sampled from the
nearest cut-cells on the positive and negative sides of the interface, respectively, taking point values of velocity
and pressure from the corresponding gravity centers. To ensure non-degeneracy of the linear algebra, datasets
difference to LSq3, the minimization is constrained by requiring to satisfy stress jump conditions JC1 and JC2. Therefore, two
ization conditions in (B.4) must be dropped and substituted by Eqs. (20) and (21). We chose to drop

oE juj
ouI
¼ 0 and

oE juj
ovI
¼ 0, since

l examination of Eq. (23) reveals that dropping any other couple of minimization conditions would involve giving preference to one
spatial directions.
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are oversampled (Nþ > 4 and N� > 4). Finally, the solution X is obtained by the standard LU decomposition
of ASIM.

5. Basic tests

In preparation for the applications of principal interest to this work, given in Section 6, here we show
results for a couple of basic convergence tests. One is the Laplace-law test, namely the simulation of a gas bub-
ble in equilibrium with a stagnant liquid (no body forces). It provides the most sensitive diagnostic of the spu-
rious current problem, as shown by previous works that addressed themselves to potential remedies. One
result of these works is that the amplitude of the spurious current scales as U sp � Csp

r
l, where Csp varies

between 10�2 and 10�5 depending on the choice of mollifying function used [33,53]. More recently, in-depth
assessments have been provided by Francois et al. [16] & Renardy and Renardy [48]. With their VOF codes,
they apply interfacial re-balancing and parabolic reconstruction in computing curvature and show good
results. We show that the sharp treatment can provide a very effective remedy too.

The second test, based on the method of ‘‘manufactured” solutions [31], is constructed as an analytical rep-
resentation of two idealized, flow fields that are made to satisfy the interfacial jump conditions. The principal
purpose of the test is to verify grid convergence rates of our SIM interface reconstruction procedure. To this
end, interfacial values of primitive variables and stresses are recovered at interfacial vertices by SIM2 and
SIM3 from point values on C1 and C2 meshes, and they are compared to the exact results.

5.1. The Laplace-law test

Sample computations were carried out in the computational domain [1 
 1] with a static bubble of radius 1
2

placed at the center. Surface tension r was set to 1, density ratio to 10, and viscosities equal to each other.
The results are summarized in Fig. 7. Fig. 7(a) shows the steady-state pressure distribution. Fig. 7(b) depicts

reduction of discretization errors with grid refinement. The errors are measured by the L1-norm defined by
Fig. 7.
shown
L1ðUÞ 	
P

m¼1;...;N Uexact
m � Ucomputed

m

�� ��
N

where N is the total number of cells.
SIM3 converges with the fourth-order, corresponding to the leading order of errors in computation of

curvature.
Error in pressure and velocity fields for the Laplace-law test, using SIM3. (a) Pressure distribution. (b) Grid convergence (rates are
in boxes; grid resolution is defined as a number of nodes per bubble’s diameter).
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5.2. The spinning bubble test

A bubble of radius R ¼ 0:4 is placed in the center of the computational domain [1 
 1]. The pressure (P)
and velocity (u ¼ ðV n; V gÞ) (see Eq. (18)) fields inside (u < 0) and outside (u > 0) the bubble are set to (Fig. 8)
P�ðrÞ ¼ P 0 þ ðP�I � P 0Þ
r
R

	 
3

V �n ðrÞ ¼ V nI

r
R

	 
2

V �g ðrÞ ¼ V gI

r
R

	 
3

ð25Þ
and
PþðrÞ ¼ P�I �
r
R

	 
R
r

V þn ðrÞ ¼ V nI
1� 2m

r
R

1� r
R

	 
	 

V þg ðrÞ ¼ V gI

1� 3m 1� r
R

	 
	 
 ð26Þ
with P 0 ¼ 20, PþI ¼ 10, V nI
¼ 1, V gI

¼ 1; r ¼ 1 and m ¼ lþ

l� ¼ 10�2, which yield at the interface
V nI
¼ 1; V gI

¼ 1; T nnI
¼ 8lþ

3R
and T ngI

¼ 3lþ

R
ð27Þ
Results are summarized in Fig. 9 in terms of the L1-norm of errors defined above. We can see that the SIM
converges with nearly-theoretical rates, i.e. with second (SIM2) and third (SIM3) orders for velocity and with
first (SIM2) and second (SIM3) orders for shear stresses. Moreover, SIM3 is orders of magnitude more accu-
rate than SIM2.

Notably, even though we treat pressure piecewise-linearly (see Eqs. (10) and (11)), it converges with only
first-order in SIM2. This is a reflection of the fact that we do not operator-split pressure and viscous stresses
as done in DIMs, for which JC1 is never explicitly satisfied. Rather in SIM pressure and viscous stresses are
tightly coupled through Eqs. (20) and (21) (to satisfy both JC1 and JC2), and thusly the apparent convergence
Fig. 8. Illustration of pressure and velocity fields in the ‘‘Spinning-Bubble” problem.



Fig. 9. Convergence rates of the SIM, applied to the ‘‘Spinning-Bubble” problem. The grid-resolution is given by the number of nodes per
bubble diameter.
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rate is dictated by the leading-order errors due to discretization of viscous normal stresses. These are the first-
order in SIM2, making the pressure converge with only first-order (note that pressure does converges with the
second-order when the discretization of the normal stresses is second-order in SIM3). This tight coupling of
viscous normal stresses and pressure terms is especially important for low-R-number flows, for which the vis-
cous operator is more significant.

6. Numerical prediction of interfacial instabilities

In this Section we show that with MuSiC–SIM we can attain direct numerical simulations of Rayleigh–Tay-

lor (R–T) and viscous-Kelvin–Helmholtz (vK–H) instabilities in the linear (exponential growth) regime. In par-
ticular, we demonstrate higher-than-first-order convergence to the results of the linear stability theory over a
broad range of conditions, including capability to handle density/viscosity ratios typical of gas–liquid systems.
Also, we demonstrate self-selection of the most dangerous wave in R–T, and capability to predict neutral-sta-
bility maps in vK–H flows. In all cases, the simulations start with a simple seeding an interfacial shape distur-
bance thereby also capturing the early acceleration regime, a key aspect of the behavior not available by linear
theory. Sample results for vK–H reveal transition to non-linear growth of surprisingly limited extent (dura-
tion, amplitude, see Fig. 16).

6.1. Rayleigh–Taylor flows

We consider here the classical Rayleigh–Taylor problem – two fluids of unequal densities subject to a body

force field (or equivalent acceleration) directed normally to their common, planar interface. When the direction
of acceleration is from the light to the heavy fluid, the interface is unstable to small perturbations, waves grow
exponentially in time (linear regime), and eventually the interface breaks up into a two-phase mixing zone that
grows algebraically in time (non-linear regime). Such a problem is specified completely by the Atwood number
(At), the Reynolds number (R), the surface tension parameter (S), and the viscosity ratio (m) defined by
At ¼ qh � ql

qh þ ql
; Rk ¼

k
ffiffiffiffiffi
kg
p

mk
; Sk ¼

r

ðqh þ qlÞ
ffiffiffiffiffiffiffi
gm4

k
3
p ; m ¼ lh

ll
ð28Þ
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where the light (k ¼ l) and heavy (k ¼ h) fluids are taken so as to satisfy the condition of instability noted
above. In defining these parameters, the natural length and velocity scales were taken as wave-length k and
# ¼

ffiffiffiffiffi
kg
p

, which yield a characteristic time of sRT ¼
ffiffi
k
g

q
, where g is the applied acceleration. In all simulation

shown here, kinematic viscosities of fluids set to be are equal, ml ¼ mh ¼ m.
In presenting the results, we will refer to scaled time tH ¼ t

sRT

	 

, maximum interface displacement eH

RT ¼ e
k

� �
,

and dimensionless growth factor KH

RT

� �
defined by
Fig. 10
Structu
KH

RT ¼
ln eðtÞ

eð0Þ

t
1ffiffiffiffiffiffiffiffiffi
g2=m3

p ð29Þ
The wave-number a is defined as 2p
k and scaled as aH

RT ¼ affiffiffiffiffiffi
g=m23
p [12]. It is generally thought that in the absence of

a particular (imposed) initial wave (the mode), the instability will self-select the fastest growing, or so-called
most dangerous wave. In our sample simulations, we are interested to show convergence to the exact analytic
results, over a wide range of conditions, including in particular: (a) At numbers that span typical density val-
ues in gas–gas (or liquid–liquid) and gas–liquid systems and (b) the presence or absence of interfacial tension.
From a numerical prowess standpoint, we wish to also demonstrate capability to handle arbitrarily large den-
sity and viscosity ratio systems.

All simulations were carried out with SIM3, and some included grid adaptation. The DIM calculations were
carried out by using the mollifying function defined by Eqs. (C.1)–(C.4), applied in the corridor d ¼ 2h (two
nodes on each side of the interface) on a Cartesian grid (Appendix C).
. Dynamics of interfacial shape and vorticity field for single-mode Rayleigh–Taylor instability. At ¼ 1=2, R ¼ 76, m ¼ 3, S ¼ 0.
re of the aC3MR grid is shown for tH ¼ 2:3 and 4.1. Effective grid resolution by SAMRL2-R4 is 256 nodes/k.
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In Fig. 10 we illustrate the overall growth dynamics and the well-known bubble-spike pattern that develops
well into the non-linear regime. The At number value is relatively low, and the density ratio (3) is modest as is
typical of same-phase systems. As shown in the insets, this kind of simulation is greatly benefited by grid
adaptation.

Comparisons with the linear theory [12] for small and large values of density ratios are shown in Figs. 11
and 12, respectively. From these we can also visualize the effects of surface tension and viscosity, as well as
appreciate that the full-range of interest in density and viscosity ratios is tractable by the SIM.

Besides the excellent fidelity of SIM, one could see also the remarkably good performance of DIM. From our
overall experience, this is a general result for this class of (R–T) problems in the linear regime, at not-too-small
values of R considered (>5), where shear effects are not too strong even in the presence of large viscosities.

Amplitude data for the case At ¼ 1=2 are shown, along with deduced history of the bubble acceleration con-
stant taken to characterize experiments in the non-linear regime [18], in Fig. 13. Past experience with such sim-
ulations, and related experimental evidence are summarized in Table 1.

Notably, an acceleration time of tH � 1 is needed for the growth to become exponential; a useful result in
providing physical connection to real-time behavior of instability in practical settings, not available from
Fig. 11. Dependence of the disturbance growth factor KH

RT on wave-number aH

RT, for small-density/viscosity-ratio configurations.

Fig. 12. Dependence of the disturbance growth factor KH

RT on wave-number aH

RT, for large-density/viscosity-ratio configurations.



Fig. 13. Illustration of transition to non-linear growth and comparison to experimental data (in the non-linear regime). Bubble
acceleration constant is defined as ab ¼ eðtÞ

At g t2. At ¼ 1=2, R ¼ 76, m ¼ 3, S ¼ 0. Effective grid resolution by SAMRL2-R4 is 256 nodes/k.

Table 1
Summary of the experimental and simulation data for ab

Experiments

Read [47] 1984 ab � 0:063–0:077
Kucherenko et al. [32] 1991 ab � 0:07
Snider and Andrews [58] 1994 ab � 0:07

Simulations

Youngs [73,74] (VOF) 1984 ab � 0:04–0:05
He et al. [24] (LBGK) 1999 ab � 0:04
Glimm et al. [18] (FT-DIM) 2001 ab � 0:07
Present study (LS-SIM3) ab � 0:06–0:08
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linear theory. At the other end, transition to non-linear growth is seen to occur at tH � 2 (eH � 0:3). As we will
see in the next section, this relatively narrow lifespan of the linear regime can be even smaller in vK–H flows, a
matter of considerable significance in validation exercises of numerical simulations.

Finally, a sample of multimode growth and self-selection is illustrated in Fig. 14. This simulation was run
with an initial disturbance on the level set function (u) given by
uðxÞ ¼ y � H 0 þ eHð0Þ
X7

i¼0

cos
pai

W
x

	 
" #
ð30Þ
where W ¼ 1 is the width of the computational domain, H 0 is the position of the interface, eHð0Þ ¼ 1:25
 10�4

is the amplitude of initial disturbance and ai are the wave-numbers (4, 14, 22, 28, 34, 42, 52, 58), selected at
random. In the results we can see the complex manner in which the dominant mode emerges, and also that, as
expected, this mode has a wave-number of 5–6, in a good agreement with the theoretical prediction for the
most-dangerous wave (5.767).



Fig. 14. Interfacial shape evolution in multi-mode Rayleigh–Taylor instability. At ¼ 1=3, R ¼ 103, m ¼ 2, r ¼ 2, S ¼ 0. Effective grid
resolution by SAMRL2-R4 is 512 nodes/W.
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6.2. Viscous Kelvin–Helmholtz flows

The classical viscous Kelvin–Helmholtz problem involves flows of two superimposed real fluids parallel to

their common interface. The remarkable result of Yih [72] is that the interface will have a range of unstable
wave-numbers, as long as m 6¼ 1, even as R � 0. As an example, we will consider the case of two-dimensional
channel flow under a pressure gradient (Poiseuille) as illustrated in Fig. 15. The problem is completely defined
by the fluid-height ratio (n), density ratio (r), viscosity ratio (m), Reynolds number (R) and surface tension
parameter (S), all defined in Fig. 15.

The characteristic velocity is that of the interface, Ui (it can be obtained from the imposed pressure gradi-
ent), and the characteristic length scale is taken as the depth of the upper fluid layer (H ¼ h1), so that the char-
Fig. 15. Flow configuration and definitions for viscous Kelvin–Helmholtz instability.
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acteristic time is s ¼ H
Ui

. Displacements, wave-numbers and times in the numerical results below are scaled by
these quantities accordingly, and we use the starred-quantities nomenclature as in Section 6.1.

Simulations were started from base-flow velocity profiles
Fig. 1
aH

KH ¼
UðxÞ ¼
U i 1þ a1

y�h1

h1
þ b1

y�h1

h1

	 
2
� �

if y > h2

U i 1þ a1

m
y�h1

h1
þ b1

m
y�h1

h1

	 
2
� �

otherwise

8>>><>>>: ð31Þ
where a1 ¼ m�n2

nðnþ1Þ and b1 ¼ � mþn
nðnþ1Þ. The pressure gradient is
dP
dx
¼ � 2U il1ðmþ nÞ

h1h2ðnþ 1Þ ð32Þ
and in the simulation it is supported by imposing periodic boundary conditions at the channel inlet/exit,
Fig. 15. Instabilities were seeded by imposing a small disturbance eHð0Þ on the interfacial shape – we will spec-
ify the initial amplitude in each case as needed.

An illustration of interfacial dynamics, starting from an exceedingly small initial amplitude of 2:5
 10�4

with wave-number aH

KH ¼ 2:5133, is given in Fig. 16. The symmetric early (linear regime) growth is easily dis-
cernable. So is also the remarkably early departure at amplitude of 1:4
 10�3, where the wave steepening is
first observed on the frontal face of the wave-form (at tH � 30). Such remarkably early transitions in viscous
shear flows have been noted also by Coward et al. [13]; as noted already, such early transitions make the win-
dow of opportunity for testing simulations against linear theory rather narrow – with attendant practical
difficulties.

An illustration of the mechanics involved in energy transfer between wave and mean flow is given in Fig. 17.
The energy is extracted from the mean flow of the lower fluid, and dissipated into the upper fluid; the differ-
ence is going to wave energy. This figure was obtained from linear stability theory (AROS code) and it also
shows the stringent grid requirements for an accurate simulation, as the vicinity of the critical layer (where the
mean flow velocity is equal to the phase speed of the wave) must be fully resolved.

Fidelity and convergence properties of our code are illustrated now by three sample simulations. Since vis-
cosity jump is the central issue, we focus on density-matched fluids with no interfacial tension. One case is for
an exceedingly low R ¼ 0:009 (m ¼ 0:203, and n ¼ 4:875), for which it happens that there are high-quality
experimental data for comparison (Khomami and Su [29]); the second is for R ¼ 0:47 (with aH

KH ¼ 5:66, a
6. Illustration of interfacial shape evolution and transition to non-linear behavior (t� � 30). R ¼ 7:1, m ¼ 0:5, n ¼ 4, r ¼ 1,
2:5133, and eH

KHð0Þ ¼ 2:5
 10�4.



Fig. 17. (a) The base flow field and Reynolds Stress Function (RSF) from AROS computation of the case considered in Fig. 20. R ¼ 7:1,
m ¼ 0:5, r ¼ 1, S ¼ 0, n ¼ 4, aH

KH ¼ 2:5133. The magnified view (b) shows the detail of the critical layer, and indicates a minimum grid
necessary for resolution in DNS.
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stable mode; and aH

KH ¼ 45:24, an unstable mode; m ¼ 0:5, and n ¼ 0:111); and the third for a moderate value
of R ¼ 7:1 (with aH

KH ¼ 2:5133, m ¼ 0:5, and n ¼ 4).
The results are summarized in Figs. 18–20. The latter includes several DIM simulations with various smear-

ing-widths, mollifying functions (harmonic- and arithmetic-mean, Eqs. (C.1) and (C.2)) and resolutions. The
convergence obtained in the MuSiC–SIM calculations for the case R ¼ 7:1 is shown in Tables 2 and 3. We can
see that in agreement with the suggestion of Fig. 17, the 256
 256 grid provides the appropriate resolution of
the critical layer at these conditions, resulting in the asymptotic grid convergence of SIM. The point of Fig. 21
is that an excellent agreement with experimental data testifies as to the intrinsic merit of such simulations [67].

In connection with Fig. 20, several salient points that need to be emphasized

(1) There is an acceleration time needed for the instability to enter the linear growth, and this is made avail-
able only by the simple seeding employed here in SIM. This physical mechanism removes arbitrariness in
time origin, or initial magnitude of disturbance, in making predictions for real flows.

(2) The harmonic-mean approach seems to show less variability to the size of the mollifying zone in com-
parison to that found by arithmetic-mean.



Fig. 19. Recovery of linear stability theory results (AROS) with MuSiC-SIM. R ¼ 0:47, m ¼ 0:5, r ¼ 1, S ¼ 0, n ¼ 0:111,
eH

KHð0Þ ¼ 5
 10�4. SIM’s effective grid resolutions (# of nodes per k) are shown in parentheses.

Fig. 18. Recovery of linear stability theory results (AROS) with MuSiC-SIM. R ¼ 0:009, m ¼ 0:203, r ¼ 1, S ¼ 0, n ¼ 4:875,
eH

KHð0Þ ¼ 1:175
 10�3. SIM’s effective grid resolutions (# of nodes per k) are shown in parentheses.
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(3) At the limit of mollifying over two cells all results agree, but to a growth rate that is much greater than
the correct one.

(4) Increasing the size of the mollifying zone results in less unstable behaviors, even to stability as the case
d ¼ 8h shows (arithmetic-mean); this is consistent with results on real diffuse interfaces [68].

Finally in Fig. 22 we show the prediction of the neutral stability map7 using MuSiC–SIM for the case of
R ¼ 10 and a relatively high viscosity ratio of m ¼ 10, in comparison to the stability boundaries found by
AROS. In all cases, the simulations were started from an amplitude of 0.00025 and the stable/unstable char-
acterization was assigned according to the decay/growth of this initial disturbance, both of them occurring
exponentially, after an initial acceleration period as noted above, in agreement with linear stability theory.
7 To construct the map in Fig. 22, we used relatively coarse grids, which were apparently insufficient to accurately predict transition from
stable to unstable interfaces in the very small sensitive region around n � 4 and wavenumber �1, requiring significant grid resolution in the
critical layer.



a

b c

ed

Fig. 20. Performance of MuSiC-SIM (a) and various implementations of DIM (b–e) against linear stability theory (AROS). Subscripts

HM and AM are harmonic and arithmetic-mean interpolation at the interfacial cells. Growth factors KH

KH are measured as
ln eHðt1Þ�eHðt0Þð Þ

tH
1
�tH

0

at

the ‘‘measurement” intervals ½t0; t1� chosen within the exponential growth regime. Scaled perturbations and time are defined as in [66].
R ¼ 7:1, m ¼ 0:5, r ¼ 1, S ¼ 0, n ¼ 4, aH

KH ¼ 2:5133, and eH

KHð0Þ ¼ 5
 10�4.

Table 2
Grid convergence for growth factors KH

KH using SIM3

Grid resolution KH

KH L1-norm

256/k 0.2481 0.0207
512/k 0.2343 0.0069

Rate 1.585

R ¼ 7:1, m ¼ 0:5, r ¼ 1, S ¼ 0, n ¼ 4, aH

KH ¼ 2:5133, eH

KHð0Þ ¼ 5
 10�4. Exact (Orr-Sommerfeld based, AROS) KH

KH is 0.2274.
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Table 3
Grid convergence for wave speed Cr using SIM3

Grid resolution Cr L1-norm

256/k 1.03761 0.00019
512/k 1.0377513 0.0000487

Rate 1.96

R ¼ 7:1, m ¼ 0:5, r ¼ 1, S ¼ 0, n ¼ 4, aH

KH ¼ 2:5133, eH

KHð0Þ ¼ 5
 10�4. Exact (Orr-Sommerfeld based, AROS) Cr is 1.0378.

Fig. 21. A comparison of experiment [29] and linear stability theory (AROS [67]).
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7. Conclusions

Results of sample numerical simulations (with both the SIM and DIM approaches) on test problems and
real flows involving Rayleigh–Taylor (R–T) and viscous Kelvin–Helmholtz (vK–H) instabilities allow us to
conclude the following:

1) The SIM3 allows convergence to exact results with near-theoretical rates (third-order).
2) The SIM3 allows prediction of growth factors in the linear regime for both R–T and vK–H flows, of

neutral-stability maps for the Yih instability in vK–H flows, and self-selects the most unstable wave
in multimode R–T flows, all without a priori knowledge or use of the eigenmodes.



Fig. 22. Neutral-stability map for the Yih-mode. R ¼ 10, m ¼ 20, r ¼ 1, S ¼ 0. Comparison of SIM with linear theory (AROS [59,66]).
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3) SIM3 provides yet another way to eliminate the spurious currents that arise in DIM.
4) The DIM performs well when instability is controlled by normal stresses as in R–T flows; but when shear

stresses dominate, performance appears to be problematic, and worthy of further investigation. Our lim-
ited tests suggest that depending on the type and degree of mollifying employed, results can vary from
stable to unstable behaviors with widely-varying growth factors.

Future development of the SIM will be focused on two challenging issues: (a) extension of the cut-cell grid
generation to three dimensions and (b) high-order implicit treatment of acoustic waves and diffusion operator,
which will be implemented along the lines of the third-order implicit Runge–Kutta [8] and Jacobian-Free New-
ton Krylov [28,30,50] methods, with physics-based (all-speed ICE [22,23,43]) preconditioning. On the other
hand, it would appear that the sharp fluid dynamics treatment of our method is compatible and possibly advan-
tageous to any interfacial flow algorithm in which the interface is represented as a discrete Heaviside function.
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Appendix A. Positioning algorithm for sub-cell markers

Subcell markers (sm) are placed at intersections of the level set’s zero-contour with the gridlines. The
positions, h ¼ xsm�xði;jÞ

h , of subcell markers are computed in a coordinate-by-coordinate fashion, using a
piecewise-cubic (fourth-order) interpolation procedure. For example, for markers found between cells
[(i,j) and (i+1,j)] (if uði;jÞ � uðiþ1;jÞ 6 0) or [(i,j) and (i,j+1)] (if uði;jÞ � uði;jþ1Þ 6 0), we have (shown for the [(i,j)
and (i+1,j)]-case only)
uði;jÞ �
3uði;jÞ þ 2uði�1;jÞ � 6uðiþ1;jÞ þ uðiþ2;jÞ

6
hþ

uði�1;jÞ � 2uði;jÞ þ uðiþ1;jÞ

2
h2

þ
3ðuði;jÞ � uðiþ1;jÞÞ � uði�1;jÞ þ uðiþ2;jÞ

6
h3 ¼ 0 ðA:1Þ
which is solved for h iteratively by the Newton–Raphson method.
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Appendix B. Least-squares interpolation

The following algorithm is used for interpolation of a scalar field on an irregular data set of N points. To
the third-order, the two-dimensional Taylor expansion is
Wðx; yÞ ¼ W0 þ xWx þ yWy þ
x2

2
Wxx þ xyWxy þ

y2

2
Wyy þOðh3Þ ðB:1Þ
where the center of coordinate system is chosen to be at the interpolated point. Introducing the vector of un-

knowns as X ¼ W0;Wx;Wy ;
Wxx

2
;Wxy ;

Wyy

2

	 
T

, interpolation is completely defined with N ¼ 6 (distinct points) by
X ¼ A�1 � B ðB:2Þ
where
B ¼

W1

W2

W3

W4

W5

W6

26666666666664

37777777777775
and A ¼

1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

3

1 x4 y4 x2
4 x4y4 y2

4

1 x5 y5 x2
5 x5y5 y2

5

1 x6 y6 x2
6 x6y6 y2

6

26666666666664

37777777777775
ðB:3Þ
To avoid singularities in matrix A (typical for irregular-grid), the dataset for interpolation is overspecified by
selecting N > 6. In this case, the interpolation is cast into the minimization problem
MIN E 	
XN>6

i¼1

xi WðLSq3Þ
i �Wi

	 
2
( )

oE

oW0

¼ oE

oWx
¼ oE

oWy
¼ oE

oWxx
¼ oE

oWxy
¼ oE

oWyy
¼ 0 ðB:4Þ
resulting in the following vector and matrix of the LSq3 interpolation
eB ¼ XN

i¼1

xiWi;
XN

i¼1

xixiWi;
XN

i¼1

xiyiWi;
XN

i¼1

xix2
i Wi;

XN

i¼1

xixiyiWi;
XN

i¼1

xiy2
i Wi

" #T

ðB:5Þ
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PN
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PN
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PN
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i
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Fig. 23. Convergence of the third-order-accurate least-squares interpolation for a smooth scalar field (L1-norm of errors).
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For efficiency, the analytical form of the inverse of this matrix is computed and stored for multiple uses.
The weight functions are defined as8
8 He
used fo

9 In
the cho
~xi
di

dmax

� �
¼ 4

9
þ di=dmax

4 1�
ffiffiffi
2
p� �þ 8� 5

ffiffiffi
2
p

12
ffiffiffi
2
p
� 1

� � d2
i

d2
max

; xi ¼
~xiPN

i¼1

~xi

ðB:7Þ
where di and dmax ¼MAXfdigi¼1;...;N are the distances-to-interpolation-points and the ‘‘radius” of the irregular
datasets, respectively. Using non-uniform weights xi 6¼ 1

N

� �
not only increases the accuracy of the interpola-

tion,9 but also ensures the robustness of the finite-volume-based integration on irregular cells. The solution
to Eq. (B.2) provides directly the derivatives needed to compute the viscous stresses.

For smooth fields, this least-squares interpolation is third-order accurate in primitive variables, and second-
order accurate in stresses. For example let us take
uðxÞ ¼ D
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

2

� �2

þ y � 1

2

� �2
s

in the domain [1 
 1] with D ¼ 0:8. Subcell markers are generated as described in Appendix A. The Level Set
is computed at these markers using the LSq3, by sampling data from gravity centers of the nearest 16 irregular
(C2-grid) cells. As seen in Fig. 23, both uniform-weights xi ¼ 1

N

� �
and those from Eq. (B.7) exhibit near-third-

order convergence in the grid-asymptotic range, however, the uniform-weight approach lags slightly in
accuracy. More importantly, we found that the use of uniform weights in finite-volume integration can cause
stability problems.

Appendix C. The DIM as used for the sample comparisons

Various implementations of DIM can be found in the literature along with the various choices available for
representing the interface, namely, the level set method (LS) [44,54], volume tracking (VT) [49], or front
tracking (FT) [70].
re, these weights are prescribed heuristically. Note that on regular datasets, they are consistent with the weights of the quadratures
r momentum-space integration in the LBGK models [37].

principle, one should be able to compute ‘‘optimal” weights xðoptÞ
i corresponding to the maximum possible accuracy � OðhN=2Þ on

sen N-point irregular dataset.
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Performance of a particular DIM is defined by one’s choice of mollifying function (the prescription of
smearing that allows gradual transition from one fluid’s properties to the other’s) and of the body force term
in the momentum equation used to model the interfacial tension. Following common use [60,61] for the for-
mer, we make use of the level set function (u), which allows an explicit and convenient ‘‘mollification” as
follows10:
10 In
constr
indicat

depend
mollify

an abi
Arithmetic-Mean; AM : wðuÞ ¼ w� þ ðwþ � w�ÞHdðuÞ; w ¼ q; l ðC:1Þ

Harmonic-Mean; HM : wðuÞ ¼ 1
HdðuÞ

wþ
þ 1�HdðuÞ

w�

ðC:2Þ
where the superscripts ‘‘+/�” denote the bulk properties of the two fluids involved, and the approximation to
the Heaviside function is defined as
HdðuÞ ¼
0 if u < �d
1
2

1þ u
d þ

sinpu
d

p

h i
if juj 6 d

1 otherwise

8><>: ðC:3Þ
For surface tension, the body force Fr xð Þ in the mollifying corridor [11,70] is defined by
FrðuðxÞÞ ¼ Ddrjn ðC:4Þ

where
DdðuðxÞÞ ¼
1þcospu

d
2d if juj 6 d

0 otherwise

(

where r, j and n are the coefficient of surface tension, interfacial curvature and unit normal-to-the-interface
vector, respectively.
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